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ABSTRACT: Numerical simulators of ground-water flow and transport are frequently used
to determine streamlines and to estimate travel times and pathways of contaminant move-
ment. These items are often obtained by tracking conceptual water particles through the
computational grid using model-calculated flow velocities. Such tracking is also an important
component of the Lagrangian part of many methods for transport modeling, in particular
the Eulerian-Lagrangian localized adjoint method (ELLAM). A procedure for exact analyt-
ical particle tracking is presented, given a lowest-order Raviart-Thomas velocity field v on
a rectangular spatial grid, with linear temporal interpolation of v from the beginning to
the end of a time step. This includes zt- and yt-bilinearity in the z- and y-components,
respectively, of v. Previous authors assumed that v was steady, or that its time derivative
was constant in space. Transience in v allows a particle to reverse its direction during a
time step. The added effect of bilinearity can be significant, especially when v varies in
time due to changes in well pumping rates or variable recharge. These effects are discussed
qualitatively and illustrated with test problems that compare the accuracy of the tracking
methods.

1 INTRODUCTION

Problems of ground-water flow and solute transport have been intensely studied in recent
years due to increased awareness of the susceptibility of ground water to contamination. Nu-
merical simulators of ground-water flow and solute transport are common tools employed in
these analyses. Numerical models are frequently used to determine streamlines and estimate
travel times and pathways of contaminant movement. These items are often obtained by
tracking imaginary particles of water through the model’s computational grid using model-
calculated flow velocities. Pollock (1988, 1989) used particle tracking to determine the loca-
tion of streamlines and to estimate the time required for water to traverse different segments
of a model domain. Tracking was also applied to estimate the extent of advective transport of
solutes (Garabedian & Konikow 1983). Other uses include its incorporation into numerical
models of solute transport that are based on the advection-dispersion equation (Konikow
& Bredehoeft 1988; Prickett et al. 1981; Zheng 1989; Healy & Russell 1993). This paper
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presents a new method for particle tracking.

The first step in a general particle tracking procedure is to solve the ground-water flow
equation using standard finite-difference or finite-element space and time grids to obtain
estimates of hydraulic head or pressure at fixed node locations and times. Darcy’s equa-
tion is then employed to calculate velocities from the head or pressure field. Alternatively,
heads and velocities can be solved simultaneously as in the method of mixed finite elements
(Raviart & Thomas 1977; Russell & Wheeler 1983). Either approach results in velocities
that are calculated at the interfaces between adjacent nodes. These velocities are then used
to calculate the pathlines and travel times of particles.

We assume a Raviart-Thomas (1977) velocity field: within each spatial cell, the z-
component is continuous piecewise-linear in the z-direction and discontinuous piecewise-
constant in the y-direction, and the y-component is the reverse. This was also assumed by
Pollock (1988, 1989) and Schafer-Perini & Wilson (1991). This vector field lends itself nat-
urally to linear interpolation for determining velocities in the interior of each cell. Linear
interpolation, however, does produce discontinuities in the velocity field at cell interfaces
(Goode 1990).

Calculation of travel path lines for any particle requires integration of the particle velocity
over time. This integration can be accomplished by one of three approaches: analytical,
numerical, or semianalytical. The analytical approach (Javandel et al. 1984) produces exact
solutions, but only for a limited number of ideal cases of steady flow, homogeneous media,
and simple geometry. Such cases seldom arise in practice.

Numerical techniques for integration include the explicit single-step method (Goode
1990), the first-order Euler (Lu 1994), and the fourth-order Runge-Kutta (Nelson 1978;
Shafer 1987; Zheng 1989). These schemes are not limited by transient velocities or complex-
ity in the velocity fields. The single-step explicit method is computationally simple, but of
limited accuracy. The other two methods can attain a high degree of accuracy, but may
require a large number of steps (and therefore computation time) to do so.

The semianalytical technique combines aspects of analytical and numerical methods. It
makes use of an analytical solution to the integral within an individual space and time
cell under the assumption of the Raviart-Thomas velocity field. Tracking is then conducted
through one cell at a time. This idea was first presented by Pollock (1988, 1989) for steady-
state flow conditions and has since been used by Schafer-Perini & Wilson (1991) and Healy
& Russell (1993). It was extended to include nonsteady-state conditions under the added
assumption that velocities varied linearly with time within each time step and that the
spatial derivative of velocity was constant in time (i.e., 9*v/dz0t = 0) (Lu 1994).

In this paper we extend the work of Lu (1994) and obtain the tracking equations for
nonzero 0?v/0x0t. Test problems are presented to demonstrate the sensitivity of results to
inclusion of this term. Because of the complex nature of the tracking equations, a detailed
algorithm is provided. The algorithm permits straightforward treatment of single or double
reversals in velocity direction that may occur within a single time step.

2 TRACKING EQUATIONS

2.1  Decoupled ordinary differential equations

Let C = [x;_1, 2] X [yj_1, yj] X [t", 1" "] be a space-time cell in a two-dimensional rectangular
grid over a time step. The developments described below will generalize in an obvious way



to three space dimensions. In C, suppose that a particle is located at (¢, yo) at time %y. Let

vo = (v, v5) = (v*(xo, Yo, o), v¥ (2o, %0, t0)) (1)

be the velocity vector at this location and time. Spatially, the velocity belongs to the lowest-
order Raviart-Thomas space RT,, and the RT, coefficients are linear functions of time, so
that v® is bilinear in z and ¢ and constant in y, and v? is bilinear in y and ¢ and constant in
x. Accordingly, if we let

vy = %1; (to) (independent of z and y), (2)
ovY ,
vy, = @(to) (independent of z and y), (3)
ov® .
v = P (zo) (independent of y and ), (4)
v ovY .
v = E(yo) (independent of z and t), (5)
0*v®
Vot = o (constant), (6)
0*vY
Vyr = 9yt (constant), (7)

then we can write the velocity components on C' as
v (x,t) = v + vf At + (v + v At) Az, (8)

v (y,t) = vf + o] At + (v, + v, At)Ay, 9)

where Az =z — xy and Ay =y — yo.
The tracking of the particle across C', which amounts to determining the trajectory
(x(t),y(t)), is governed by the ordinary differential equations

() = v*(z(t),t), z(ty) = o, (10)

y'(t) = vy),1),  ylto) = vo- (11)

Because v* does not depend on y and v¥Y does not depend on z, these ODE’s are decoupled,
and each can be solved on C' without reference to the other. The analogous observation holds
in three dimensions.

2.2 Global tracking algorithm

The global tracking algorithm consists of a sequence of local tracking steps, each of which
is confined to a single space-time cell C. A step begins at an initial time t, > t", which is
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either the starting time for the trajectory or the time at which the trajectory enters C. The
step lasts until a final time ¢; < ¢"*!, which is either the ending time for the trajectory or
the time at which it leaves C' (note that it leaves at time ¢"*! if it does not cross the spatial
boundary of C').

Because the ODE’s (10) and (11) are decoupled, one can separately determine times
ty > to and t, > ¢ at which z(¢) and y(t), respectively, leave the ranges corresponding to C.
Then t; is set equal to the minimum, ¢; = min{t,,¢,}. Similarly, in three dimensions, ¢ is
the minimum of three times determined by independent one-dimensional calculations. Thus,
the objective of the detailed algorithm below is to carry out one local step in one dimension.
These local one-dimensional steps can be compared to find ¢, then concatenated to follow
the global trajectory.

2.3 Global tracking equations

Accordingly, we confine ourselves henceforth to a single dimension z. The ODE (10), with
terms defined in (2), (4), (6), and (8), can be solved analytically. We drop the superscript
from v§ and v} in (1), (4), and (8). Suppose for now that these definitions hold globally, i.e.,
ignore the fact that they are different on cells other than C'. The analytical solution is

U 1 2
./,E(t) = I + = (ezvmtAt v At 1)
xt

1 v 2
+ (UO _ Ugﬂ)t) eivmt(At-‘rm) m %
Vgt 2V
x |erfc (wl@v—z) — erfc (,/% (At + &>>] )
2 vy 2 Vgt
Vgt > 0, (12)
Ut (Lo A4, At
x(t) =29 + — (e2¥ eat _ 1
0=+ 2 ( )
1 v, 2 2
i (Uo _ vwvt) egvmt(At—l—m) «
Uyt — Vgt
_Umt At—'—qj}—‘z .
x/ - ’ ( M) e” ds, Vg < 0, (13)
e
ele At _ evs At _ (1 4 v, At
x(t) = 7 + vo + v (140
Vg (%
Vgt = 0, v # 0, (14)
1 2
x(t) = xo + vo At + §vtAt , Vg = Uy = 0. (15)



Equations (14) and (15) are those of Lu (1994). In our more general context, (12) through
(15) are not satisfactory for a practical implementation, due to difficulties with roundoff
error. Small values of v,; require an alternative equation that eases the transition from (12)
or (13) to (14). Let € denote the machine precision, i.e., the smallest positive number such
that 1+ ¢ > 1. Analysis of (12) and (13) finds roundoff error O(vy;'¢). Then asymptotic
techniques to determine the behavior of z(¢) for small v, lead to (14), plus a first-order term
in v,;, with truncation error O(vit). As v, tends to 0, the roundoff error increases and the
truncation error decreases, yielding a threshold |v,:| = d above which (12) or (13) is used,
and below which (14) with the additional first-order term is used. The threshold is where
the two errors are equal, O(v,'e) = O(v2,), so that § = O(e'/?) and the error is O(¢2/?). The
actual implemented equations are

z(t) = right-hand side of (12), vz >4, (16)
z(t) = right-hand side of (13), Vg < =0, (17)
v At __ 1 v At __ 1 mAt
2(t) = 20 + Voo + S (2+U )
Vg v2
by, | Y0 (Lagzereat _ e — (1+v,At)
Uy \ 2 v2

vaAl (1 + v, At)

1 e
+ v <§At2

A (L4 At + 5 (0 Al + %(vat)‘”’))]
v ’
|vge| <6, v, not small, (18)
where
d= |2€vt max{1, e””“At}r/3 X

v At €8 — (14 v, At + 5 (v AL)?)
8 v3

d

V¢ AtG
48

)_1/3. (19)

Vo Att eve At — 1 ‘

8 Vg




In (18) and (19), if v, is small, make the following replacements, letting s = v, At:

Replace with if [s| <

= At1+32)  (6e)/3

i AL +3) (24

i (pare - =5 ARG+ E) (R0
es_(m?mgs% At (L + 25)  (7206)1/°
TLEHD ARG ) (12090

The next section discusses how these equations are used within the confines of a space-time
cell C.

3 LOCAL TRACKING ALGORITHM

A complication in determining the time ¢; when a trajectory leaves a cell is the possibility
of reversals in the direction of the trajectory. Thus, one cannot simply assume that if the
trajectory is within the range of C' at the initial and final times, then it must be within the
range at all intermediate times. This section analyzes the possibilities for reversals and then
bases a detailed algorithm on the results.

3.1 Rewversals of direction
Equation (8) for the velocity v(z,t) = v*(x,t) can be rewritten in the form

v(z,t) = Vg (Aa;_i_ﬂ) <At+v—$>

(T Vgt
+ (Uo - Umvt) ) Vgt # 0, (20)
(T
v(z,t) = v Az + v At + vy, Vg = 0, (21)

where x = zy + Az, t = to + At, and we think of Az and At as the variables. Reversals
can occur if v = 0 somewhere in C, so we concern ourselves with the locus of points in the
(Az, At)-plane where v vanishes.

If vy = 0, then by (21) this locus is a straight line in the plane. If this line meets C
and has negative slope (v, and v; have the same sign), the two essentially distinct reversal
situations are depicted in Fig. 1. Each box represents the space-time cell C in the zt-plane (z
on the horizontal axis), the solid line is the locus of v = 0, and the dashed line is a possible
trajectory with slope dt/dx = 1/v at each point. In the left figure, v, < 0 and v; < 0, so
that v > 0 in the lower left and v < 0 in the upper right. The reverse is true in the right
figure. Note that the trajectory can only cross the solid line vertically (v = 0 implies that
the slope 1/v is infinite). If the locus has positive slope, mirror images of Fig. 1, with the
signs of v reversed, cover the possibilities. In all cases, there is at most one reversal, and
its presence can be detected by the initial and final velocities vy and v, having opposite
signs. These possibilities arise in Lu (1994). As a special case of (21), if the velocity is steady
(vs = 0), then the solid line in Fig. 1 would be vertical, and the trajectory could not cross it;
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Figure 2: Reversal possibilities with bilinear velocity function, v = 0 on intersecting lines.

in other words, reversals cannot occur in a steady velocity field, as in Pollock (1988, 1989)
and Schafer-Perini & Wilson (1991).

Next, suppose that v,; # 0, so that (20) applies. The locus of v = 0 is a hyperbola
with vertical asymptote Az = —wv;/v,; and horizontal asymptote At = —v, /v, unless
VoUzt = Uz, in which case the locus consists of the two asymptotes. The latter case is
depicted in Fig. 2, with v, < 0 in the left figure and v,; > 0 in the right. In either situation,
at most one reversal is possible, and the signs of the initial and final velocities vy and v; will
flag it.

Now suppose that vgvy < vzv;, so that the locus is a hyperbola whose branches lie in
the first and third quadrants relative to the asymptotes and have negative slope. The locus
divides the plane into three regions. The possibilities can be classified according to the sign
of vy, which determines the sign of v in each region, and according to which regions the
lower-left and upper-right corners of C lie in. The six essentially distinct cases are shown in
Fig. 3, with v;; < 0 in the three left figures and v,; > 0 on the right. In all but one of the
cases, at most one reversal is possible, and it can be detected as above. The possibility of
two reversals arises in the middle-left picture in Fig. 3; however, it can be flagged by the fact
that the initial and final velocities are negative (vy < 0, vy < 0), while the net movement
from the initial to the final position is in the positive (opposite) direction (z; > ). The
cases for vgv,s > v, v, are covered by mirror images of Fig. 3 with the signs of v reversed.

The reversal cases can be summarized as follows. At most two reversals are possible. If
there are two, then z; — xy has sign opposite to that of vy and vy, and conversely. If there
is one, then vy and vy have opposite signs, and conversely.



Figure 3: Reversal possibilities with bilinear velocity function, v = 0 on hyperbola.

3.2 Detailed local tracking algorithm

The algorithm described here is based on the analytical equations and the reversal pos-
sibilities derived above. The objective is to detect the earliest time at which a trajectory
leaves the space-time cell C. If there is no reversal during the time step, and the trajec-
tory crosses the cell boundary, this leaving time is found by solving the nonlinear equation
z(t) = boundary coordinate, where x(¢) is given by (16), (17), or (18). The solution is ob-
tained by Newton’s method, using (8) for the derivative z'(¢t) = v*(z(t),t), with a bisection
method as a backup if a Newton step fails to make x(t) closer to the desired value. If there
is a reversal, then its time t* is found by solving v(x(t),t) = 0, with v given by (8). Again
Newton/bisection is used, with derivative

V(1) = vy + v Az + (vp + Ve AL)v(E). (22)

Once t* is found, it is known that there are no reversals between ¢y and t*, so that the time
interval up to t* can be treated as a step without reversals.

In the following step-by-step description, ¢, is the current time, at which the local tracking
step begins; xo = x(to) is the current position, from (16) through (18); vy is the current
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velocity, from (1); vy, vy, and vy, from (2), (4), and (6), are the current parameters in the
velocity equation (8), and may depend on the velocity direction if 4 is at a cell boundary
(choose those corresponding to the cell being entered by the trajectory); ¢ is the end of the
current time step, the goal of the local tracking step; and x; and xg are the left and right
endpoints of the cell containing x, (the cell being entered by the trajectory if z, is at a cell
boundary). Note that the “cell being entered” is unambiguous, because v is continuous at
cell boundaries.

At the start of each local tracking step, ty, o, Vo, Vg, Vs, Vst, tf, Tr, and zg are set. To
complete the step and be ready for the next step, the following algorithm determines new
values for these parameters.

1.

10.
11.

12.

13.

Compute the final position z; = x(t;) from (16) through (18) and the final velocity
vy = v(xys,tr) from (8), as if the current velocity parameters were global.

. If vy and vy have opposite signs, go to step 6. (If vy = 0, assign the sign of v; if v; = 0,

assign the sign of —8—:(xf, tr) = —(vy + vm(zf — 20)).)

[vo and vy have the same sign] If vy and v; are negative, go to step 5.

. [vo and vy are positive] If xy < x5 < zg, go to step 15. If xp < xy, set t; = by, to =ty

and go to step 16. If z; = xg, go to step 18. Otherwise (zf < o), go to step 9.

[vo and vy are negative] If z;, < zy < o, go to step 15. If z; < zp, set t1 = tg, 1o =ty
and go to step 17. If z; =z, go to step 20. Otherwise (zo < xf), go to step 12.

[there is one reversal] Set ¢, = ty, to = t;, and use Newton/bisection with (22) to find
the unique t*, t; < t* < t, such that v(z(¢*),t*) = 0. Evaluate z* = z(t*).

If 2 <z, set t; = 1y, to = t*, and go to step 17. If xxr < x*, set t; = 1y, 1o = t*, and
go to step 16.

[reversal occurs within current cell] If x; < zp, set t; = t*, to = t;, and go to step 17.
If g < x4, set t; =t*, to = ty, and go to step 16. If 1, < zy < zg, go to step 15. If
Ty = xr, go to step 20. Otherwise (z; = xg), go to step 18.

[two reversals, vy and vy positive, net movement to left] Set t; = ¢y, to = ¢y, and use
Newton/bisection with (8) to find the unique , t; < f < ty, such that z(#) = (zo+zy)/2-
Then set ¢, = ty, to = ¢, and use Newton/bisection with (22) to find the unique #*,
1y < t* < ty, with v(z(t*),t*) = 0; this is the time of the first reversal. Set x* = z(t*).

If xgp < x*, set t; = ty, to = t*, and go to step 16.

[first reversal occurs within current cell] If 2(¢) < zy, set t; = t*, t, = £, and go to step
17. Otherwise (x(t) > zr,), go to step 22.

[two reversals, vy and vy negative, net movement to right] Same as step 9.

If * < xp, set t; = ty, to = t*, and go to step 17.



14.

15.

16.

17.
18.

19.

20.
21.
22.

23.

[first reversal occurs within current cell] If zp < z(f), set t; = t*, t, = £, and go to step

16. Otherwise (z(t) < zg), go to step 22.

[tracking for full time step stays within current cell] Set ¢y = s, t; to the end of

ov ov
the next time step, xy = z(to), vo = v(xo,t0), vz = a—(xo,to), v = E(xo,tﬁf), and
T
0%v
Vgt = m(xo, tg), where t§ refers to the next time step that begins at ty; z7, and zg
xr

are unchanged. Go to step 23.

[tracking crosses right endpoint before end of time step] Use Newton/bisection with
(8) to find the unique ¢, t; < ¢’ < ty, such that z(¢') = xg. Set to = t', xo = z(t') = zg,
v 2

ov
vo = v(To,t0), vz = = (xg,t0), vt = E(xo,to), Vgt = (zg,t0), Tr, = g, and zg

v

ox 0xO0t
to the right endpoint of the next cell to the right, where z§ refers to the next cell to
the right, whose left endpoint is z¢; ¢; is unchanged. Go to step 23.

Like step 16, replacing right,z g, ,z1,left with left,z; ,xy ,x g right, respectively.

[tracking reaches right endpoint at end of time step] Set ¢y = ty, 2o = z(to) = =,

ov .
vo = v(xo, to), Vs = a(wo, td), and t; to the end of the next time step.

: . . v ooy
If vgp > 0, or if vp = 0 and v; > 0, set v, = — (g ,t0), Vot = ——= (27,5 ), Tr. = Tg,
and zg to the right endpoint of the next cell to the right. If v5 = 0 and v; < 0, set
ov 0%v
vy = — (g, tp) and vy = m(xa,tar); zr, and zg are unchanged. In either case, go
i
to step 23.

Like step 18, replacing right,xr with left,x .

Like step 19, replacing >,>xd 21,2 right,<, 1, with <,<,zy,rg,rp,left,> zf.

[track through the first of two reversals, staying in the current cell] Set t, = {,
ov v
Ty = .'L'(t()), Vo = U(l"o,to), Vg = a_x(CL‘O:tO)a and Vg = a(antO); Vgt tf: TrL, and TR

are unchanged. Go to step 23.

[one local tracking step completed] Go to step 1.

4 RESULTS AND DISCUSSION
4.1 Ezrample 1

We first consider the one-dimensional problem presented in detail by Lu (1994). The sim-
ulated region is shown in Fig. 4 and consists of an aquifer of thickness 10 m that extends
from a fully penetrating ditch at z = 0 to co. Aquifer hydraulic conductivity is .0002 m/s,
specific storage is 2.0E-8 m~!, and porosity is 0.5. Initially all heads in the aquifer and ditch
are equal to 10 m. At time ¢ = 0, the head in the ditch is instantaneously lowered to 0 and
maintained at that level for all subsequent times. Velocities at any point in space and time
can be determined from the analytical solution given by Carslaw & Jaeger (1959).
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Figure 4: Aquifer, 10 m thick, simulated in example 1 (Lu 1994).

Table 1: Particle travel times (days) for example problem 1 with number of time steps NT
= 15, injection time T (minutes) = 1 or 1000.
Travel time

Method T=1 T=1000

Euler 14.35  21.15

present 13.28  20.78

Lu 13.28  20.77

Pollock  9.28 17.43

We used the same discretizations as Lu (1994): node spacings of 0.5 m and 15 time
intervals (0.00035, 0.001, 0.01, 0.05, 0.2, 0.7, 1.2, 2.0, 3.0, 5.0, 9.0, 13.0, 17.0, 21.0, 30.0
days). Particles were tracked to the ditch from a distance of 5 m away for two initial times
of release (1 and 1000 min).

Travel times between the injection point and the ditch are presented in Table 1 (NT = 15)
for Euler integration with 1000 steps (Lu 1994), the method proposed here, the method of
Lu (1994), and the semianalytical method of Pollock (1989) which assumed that within each
time interval velocity was constant and equal to that at the end of the time interval. Values
calculated for the latter two methods match those presented by Lu (1994) and thus imply
that our computer program is correctly calculating travel times. The difference in results
between our method and Lu’s is trivial for this example and indicates that our method has
no advantage. Indeed, the increased computational effort required by our method makes it
less attractive than Lu’s for this particular problem.

In order to test sensitivity of results to time discretization, the problem was rerun with
100 variably spaced time steps (NT = 100). Again we saw virtually no difference between our
method and Lu’s; however, results of all methods were closer to the Euler solution with the
finer time discretization. In particular, the results of Pollock (1989) appeared more attractive,
especially in light of the lesser computational requirements it has. A similar sensitivity was
conducted on the spatial discretization; it showed very little change in results for refined
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grids.

4.2 FEzample 2

For the second test problem, we modify the first example by extending to two dimensions
and by allowing heterogeneity in the hydraulic conductivity field. The simulated domain now
extends 5 m in the y-direction with spacing equal to that in the z-direction (0.5 m). The
ditch extends across the entire length of the grid in the y-direction and initial and boundary
conditions remain unchanged so that flow is still predominantly in the z-direction.

The natural log of hydraulic conductivity was randomly generated by the method of
turning bands (Mantoglou & Wilson 1982). Spatial correlation was assumed over a distance
of 3 m and was described by a spherical variogram. The mean and variance of the generated
log values were -3.912 and 5, respectively. Specific storage was again set at 2.0E-8 m~'. The
flow equation was solved numerically with the grid extended in the z-direction to a distance
sufficient to insure no boundary effects. The boundaries at ¥y = 0 and 5 m were impermeable.

At an initial time of 200 sec, 100 particles were introduced at z = 5 m (10 particles equally
spaced in each of the 10 cells in that column of the grid). Particles were tracked through the
complex, 2-dimensional flow field until they reached the ditch. For each particle the starting
and ending location and the total travel time were recorded. Results of different methods
were compared on the basis of travel time and ending location. For each realization of the
log hydraulic conductivity field, three simulations were made. These simulations differed
only in the time discretization (number of time steps NT = 200, 100, or 20). Results from
many simulations were studied and found to be qualitatively very similar. Therefore we
present results from only two. To analyze results we consider the fine time discretization
(NT = 200) using the present method to be the standard for comparison. This decision
is somewhat justified by the fact that there was virtually no difference in results among
the three methods for this discretization, and the present method accounts for the highest-
order velocity variations. For each particle we compared the total travel time, ¢/, and final y
coordinate, y/, to the values obtained from the standard solution (%, ys, respectively). The
mean square error (MSE) of travel time was calculated from normalized values of (t,—t/)/t;.
The average time deviation (DEV) and y-location deviation were calculated as average values
of [t, —tf|/t, and |y, — y|/ys. Values for these terms are contained in Table 2.

The significance of the enhanced accuracy of the present method can be measured in
two ways: by the differences between its results and those the other methods, and, when
NT is decreased, by the amounts by which the errors of the other methods exceed those
of the present method. For the fine time discretization (NT = 200), there is very little
difference between results of our method and that of Lu (1994), while the Pollock (1989)
method showed somewhat larger differences. As NT was decreased, the differences among all
methods increased, and this trend toward differences of the order of 1% or more was apparent
in all of the realizations examined. When N'T changes, so does the computed velocity field;
this causes the largest share of the errors in the bottom rows of the table. However, the
present method appears to reduce the NT-sensitivity of the method of Lu (1994) by the
order of 10% for this problem.
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Table 2: Results of example 2 for number of time steps, NT, equal to 200, 100, 20.

Realization 1

Realization 2

Method Average  Time Time Y Average  Time Time Y
travel time MSE DEV DEV travel time MSE DEV DEV
NT = 200
present 8.98E+5 — — 1.64E+5 — — —
Lu 8.98E+5 0.000 0.028 0.001 1.64E+5 0.000 0.002 0.001
Pollock 8.88E+5 0.002 0.036 0.000 1.60E+5 0.001 0.033 0.001
NT = 100
present 8.93E+5 0.007 0.067 0.001 1.35E+5 0.013 0.090 0.001
Lu 8.92E+5 0.007 0.071 0.001 1.35E+5 0.014 0.094 0.002
Pollock 8.79E+5 0.015 0.120 0.001 1.28E+5 0.027 0.153 0.001
NT =20
present 9.24E+5 0.064 0.249 0.001 1.37E+5 0.028 0.165 0.002
Lu 9.09E+5 0.081 0.271 0.005 1.35E+5 0.032 0.177 0.005
Pollock 8.84E+5 0.110 0.325 0.001 1.26E+5 0.056 0.237 0.001
Table 3: Results of example 3 for number of time steps, NT, equal to 200, 100, 20.
Realization 1 Realization 2
Method Average  Time Time Y Average  Time Time Y
travel time MSE DEV DEV travel time MSE DEV DEV
NT = 200
present, 2.87TE+6 — — — 1.20E+7 — — —
Lu 2.93E+6  0.003 0.019 0.000 1.20E+7 0.000 0.005 0.001
Pollock 2.79E+6  0.001 0.034 0.000 1.18E+7 0.009 0.047 0.001
NT = 100
present 2.60E+6 0.006 0.063 0.000 1.01E+7 0.013 0.080 0.000
Lu 2.62E+6  0.009 0.061 0.008 1.00E+7 0.014 0.081 0.002
Pollock 2.57TE+6  0.008 0.069 0.007 9.93E+6 0.033 0.131 0.000
NT =20
present 2.87E+6  0.040 0.164 0.007 1.00E+7 0.024 0.134 0.002
Lu 2.14E+6  0.048 0.177 0.015 9.83E+6  0.032 0.147 0.005
Pollock 2.21E+6 0.061 0.201 0.020 1.02E+7 0.068 0.223 0.013

4.3 Ezample 3

The third test problem is identical to the second, except that ground-water velocities change
direction during the simulation. Water level in the ditch is initially lowered to 0 m, then
raised back up to 10 m, and then lowered to 0 m again. This causes the prominent direction
of flow to be first toward, then away, and finally back toward the ditch. This example should
produce relatively large values for 8?v/0x0t and should therefore be indicative of the largest
differences to be expected between our method and that of Lu (1994). Results of these
runs are shown in Table 3. The reduction of the NT-sensitivity is somewhat greater than in
Example 2, and the differences in results in general, and particularly for the coarsest time
discretization in Realization 1, are notably greater. In this regime, inclusion of the bilinear

term can lead to highly significant differences in particle travel times.
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5 CONCLUSIONS

The new particle-tracking method produces analytical trajectories in velocity fields that
arise from a lowest-order Raviart-Thomas spatial discretization on a cartesian grid, fully
accounting for linear temporal variations, including space-time bilinearity. Inclusion of the
bilinearity is unimportant in some cases, but with spatial heterogeneity, and particularly
with time-varying pumping or recharge, it can make large differences in travel times.
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